Log-dimensional Spectral Properties of One-dimensional Quasicrystals

نویسنده

  • DAVID DAMANIK
چکیده

We consider discrete one-dimensional Schrödinger operators on the whole line and establish a criterion for continuity of spectral measures with respect to log-Hausdorff measures. We apply this result to operators with Sturmian potentials and thereby prove logarithmic quantum dynamical lower bounds for all coupling constants and almost all rotation numbers, uniformly in the phase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform spectral properties of one-dimensional quasicrystals, I. Absence of eigenvalues

We consider discrete one-dimensional Schrödinger operators with Sturmian potentials. For a fullmeasure set of rotation numbers including the Fibonacci case we prove absence of eigenvalues for all elements in the hull.

متن کامل

Electronic Energy Spectra of Square and Cubic Fibonacci Quasicrystals

Understanding the electronic properties of quasicrystals, in particular the dependence of these properties on dimension, is among the interesting open problems in the field of quasicrystals. We investigate an off-diagonal tight-binding hamiltonian on the separable square and cubic Fibonacci quasicrystals. We use the well-studied singular-continuous energy spectrum of the 1-dimensional Fibonacci...

متن کامل

Topological States and adiabatic pumping in quasicrystals.

The unrelated discoveries of quasicrystals and topological insulators have in turn challenged prevailing paradigms in condensed-matter physics. We find a surprising connection between quasicrystals and topological phases of matter: (i) quasicrystals exhibit nontrivial topological properties and (ii) these properties are attributed to dimensions higher than that of the quasicrystal. Specifically...

متن کامل

ar X iv : m at h - ph / 9 91 00 17 v 1 1 2 O ct 1 99 9 UNIFORM SPECTRAL PROPERTIES OF ONE - DIMENSIONAL QUASICRYSTALS , III . α - CONTINUITY

We study the spectral properties of discrete one-dimensional Schrödinger operators with Sturmian potentials. It is shown that the point spectrum is always empty. Moreover, for rotation numbers with bounded density, we establish purely α-continuous spectrum, uniformly for all phases. The proofs rely on the unique decomposition property of Sturmian potentials, a mass-reproduction technique based ...

متن کامل

Gordon-type arguments in the spectral theory of one-dimensional quasicrystals

We review the recent developments in the spectral theory of discrete one-dimensional Schrödinger operators with potentials generated by substitutions and circle maps. We discuss how occurrences of local repetitive structures allow for estimates of generalized eigenfunctions. Among the recent applications of this general approach are almost sure and uniform results on the absence of eigenvalues ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001